PLUG West

Mission-Critical Enterprise Linux

April 17, 2006

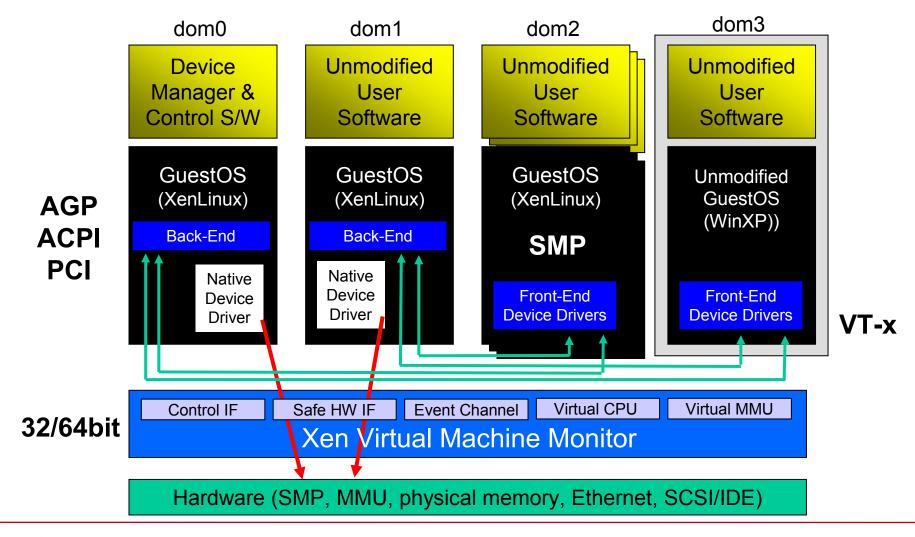
Agenda

- Welcome
 - Who we are & what we do
 - Steve Meyers, Director Unisys Linux Systems Group (steven.meyers@unisys.com)
- Technical Presentations
 - Xen Virtualization In The Enterprise
 - Luke Szymanski, Software Engineer Unisys Linux Systems Group (lukasz.szymanski@unisys.com)
 - Linux File System Performance In Enterprise Environments
 - Linux Scalability Challenges
 - Amul Shah Software Engineer Unisys Linux Systems Group (amul.shah@unisys.com)

PLUG West

Xen Virtualization In The Enterprise

April 17, 2006



Current Solutions

Product	OS-based or Hypervisor-based	Full virtualization or Paravirtualization
Microsoft Virtual Server	OS-based	Full virtualization
VMware GSX	OS-based	Full virtualization
VMware ESX	Hypervisor-based	Full virtualization
Xen	Hypervisor-based	Paravirtualization (and H/W Assisted)

Xen 3.0 Architecture

Xen 3.0 Features

- Intel VT-x support
- Live VM relocation
- Optimized inter-VM networking
- Continued reduction of hypervisor
- Improved management tools

Xen 3.0 Features

- Improved ACPI support
- ia-32, ia-32 with PAE, x86_64, ia-64, PPC
- Host
 - Up to 32 processors
 - Up to 16 GB memory on ia-32 with PAE
 - Up to 8 TB memory on x86_64
- Guests
 - SMP guests
 - Up to 16 GB memory on ia-32 with PAE
 - Up to 8 TB memory on x86_64

Why do I Care?

- Increased resource utilization
- Greater usage flexibility
- Better availability
- Legacy compatibility
- Improved manageability

Unisys' Involvement

- Active participant in Xen community since 2004
- Scalability & performance
 - First member to run 32 processors
 - First member to consistently run with >4 GB of memory
 - First member to push Xen to maximum # of VMs
 - Currently raising limit on # of processors
 - Supporting "mini OS" as building block for VT-x I/O performance improvements
- Systems management
 - Contributor to CIM development subgroup

Unisys' Involvement

- Support of ES7000/one
 - 32 sockets / 64 cores / 128 threads
 - 256 GB memory
 - x86_64 (and ia-32 with PAE)

References

- Xen project at University of Cambridge
 - http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
- XenSource
 - <u>http://www.xensource.com/</u>
 - You can download Xen and a live-cd version of Xen from this site.
- Xen mailing lists
 - <u>http://lists.xensource.com/</u>
- Proceedings from the 2005 Ottawa Linux Symposium
 - <u>http://www.linuxsymposium.org/2005/</u>
 - Two papers in volume 1
 - One paper in volume 2

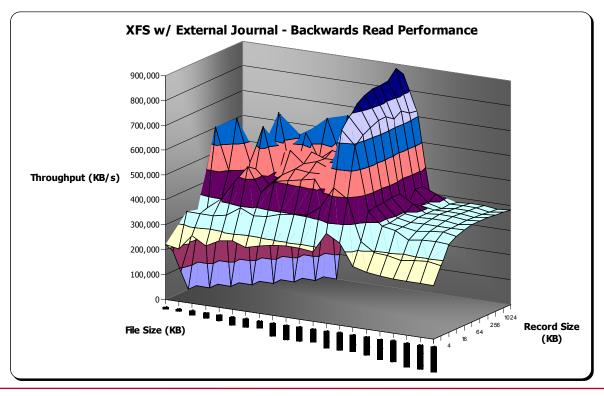
PLUG West

Linux File System Performance In Enterprise Environments

April 17, 2006

Overview

- What is a File System?
 - Allows multiple file storage
 - Raw partitions store single files only
 - Method for file management
 - Physical location can be optimized
 - ACLs
 - Quotas
 - Advanced functionality
 - Undelete
 - Security
 - FS specific features
 - GRIO
 - Atomic Operations


File System Choices

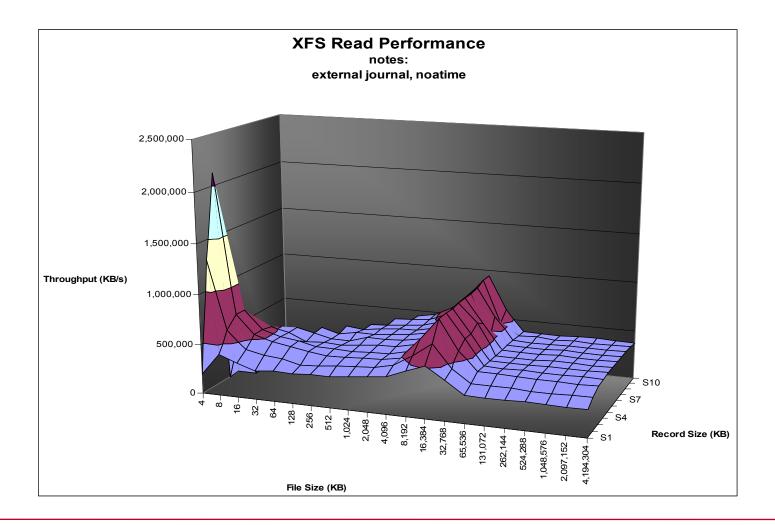
- Many to choose from
 - Linux supports dozens of file systems
 - Our focus is on enterprise file systems
- Enterprise Class File Systems
 - ext2/ext3
 - Included as the performance high watermark
 - Can journaling file systems compete with ext2?
 - Reiser3/4
 - First journaling fs to be included in the kernel
 - JFS
 - Open sourced IBM AIX file system
 - XFS
 - Open sourced SGI IRIX file system

File System Testing

- 5 File Systems tested
- 1000+ Hours of SMP-based testing on 2.6 Linux
- Approx. 200,000 data points

Testing on Datacenter Hardware

- Server
 - Single 8-socket cell of an ES7000/540 "Orion" IA32 server
 - 8 GB RAM
 - QLogic 2310F Fibre Card
 - Single path to eliminate MPIO variables
- Disk Subsystem
 - EMC CLARiiON CX600
 - 16-Disk RAID-0 Array (target)
- Software
 - SUSE Linux Enterprise Server 9 (ia32)
 - IOZone
 - Open-source file system benchmark



Results

- Ext2, with its lack of journaling, was very fast--but not always the fastest.
- XFS was the fastest in overall write performance.
- JFS was the fastest in overall random write performance.
- Ext2 was the fastest for **Oracle performance**, but XFS was a close second.
- Ext2 was the fastest for Desktop workloads, but JFS was a close second
 - Recommended: JFS offers ext2-like performance for the desktop, but with the added integrity of file system journaling

JFS *minimum* read performance – 198 MB/s

Whitepaper

- The whitepaper and the performance metrics on which it is based are open to the public.
- See the Unisys eCommunity website for the paper or send a request to troy.stepan@unisys.com for more details.

http://ecommunity.unisys.com

PLUG West

Linux Scalability Challenges

April 17, 2006

Why are there problems?

- ES7000/one has
 - 32 dual-core hyper-threaded Xeon processors (128 CPUs)
 - 256GB of RAM
 - 48 PCI-X slots
 - Total system IO space is 64KB
 - 16 built-in Gigabit Ethernet ports
 - 65 I/O Advanced Programmable Interrupt Controllers
 - 1560 Interrupts
 - Non-Uniform Memory Architecture

Why are there problems? Cont.

- Red Hat RHEL 4 and SuSE SLES 9 didn't support all of our IOAPICs
- Red Hat RHEL 4 x86_64 only supported 8 CPUs
- Red Hat claimed RHEL 4 Update 3 supports 256GB
- Distribution install kernels do not support APIC mode
- Patch the kernel to handle resource conflicts in I/O space
- Issues with BIOS table memory locations and format
 - Hot-Add Memory
 - MP Tables

Sample Customer Issue

- System has 8 x86_64 processors, 28GB of RAM.
- Running SLES 9 SP2 for ia32 processors.
- System hangs every evening.

Diagnosis

- System runs all day with roughly 50MB of free memory high memory, and 50MB of free low memory.
- During the day, there are roughly 175k directory entries in the cache.

Free High Mem 50MB	
Large User Job	
U	
High Mem	
5	
Free Low Mem 50 MB	
Dentries 175k	
Low Mem	

Diagnosis cont.

- At the end of the work day, a large job ends, and the high free memory jumps to 12GB.
- Over the next couple of hours, the number of directory entries in the cache climbs to 2M.
- Free high memory remains around 12GB, but free low memory drops below 10MB.
- The system becomes sluggish, and finally hangs.

Free High Mem	
12GB	
High Mem	
Dentries 2M	
Low Mem	

Conclusion

- In the ia32 kernel, all kernel data structures must reside in low memory.
- The algorithms to purge the caches are based on percentage of memory free, not percentage of low memory free.
- With 12GB of free memory, the directory entry cache is never purged.
- The directory entry cache consumed all free low memory, until the kernel could no longer function.

Solution

- We created a kernel module that constantly monitors the directory entry cache.
- When the directory entry cache exceeds 200k entries, the module calls the cache's shrink routine to free old entries.
- We are investigating the ia32 virtual memory code in the kernel to propose a permanent solution to the kernel community.

Q & A

Event Pictures – Executive Conference Room

Event Pictures – Engineering Lab Tour

